Type I Error Control for Tree Classification
نویسندگان
چکیده
منابع مشابه
Type I Error Control for Tree Classification
Binary tree classification has been useful for classifying the whole population based on the levels of outcome variable that is associated with chosen predictors. Often we start a classification with a large number of candidate predictors, and each predictor takes a number of different cutoff values. Because of these types of multiplicity, binary tree classification method is subject to severe ...
متن کاملSequential Multiple Hypothesis Testing with Type I Error Control
This work studies multiple hypothesis testing in the setting when we obtain data sequentially and may choose when to stop sampling. We summarize the notion of a sequential pvalue (one that can be continually updated and still maintain a type I error guarantee) and provide several examples from the literature. This tool allows us to convert fixedhorizon step-up or step-down multiple hypothesis t...
متن کاملMultiple testing. Part I. Single-step procedures for control of general type I error rates.
The present article proposes general single-step multiple testing procedures for controlling Type I error rates defined as arbitrary parameters of the distribution of the number of Type I errors, such as the generalized family-wise error rate. A key feature of our approach is the test statistics null distribution (rather than data generating null distribution) used to derive cut-offs (i.e., rej...
متن کاملType I and II error
Type I error A type I error occurs when one rejects the null hypothesis when it is true. The probability of a type I error is the level of significance of the test of hypothesis, and is denoted by *alpha*. Usually a one-tailed test of hypothesis is is used when one talks about type I error. Examples: If the cholesterol level of healthy men is normally distributed with a mean of 180 and a standa...
متن کاملHierarchical Classification of Documents with Error Control
Classification is a function that matches a new object with one of the predefined classes. Document classification is characterized by the large number of attributes involved in the objects (documents). The traditional method of building a single classifier to do all the classification work would incur a high overhead. Hierarchical classification is a more efficient method — instead of a single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Informatics
سال: 2014
ISSN: 1176-9351,1176-9351
DOI: 10.4137/cin.s16342